
Determination of principal characteristics 
of turbulent swirling flow along annuli: 
part 4: an asymptotic solution 
Y. S. M. Morsi* and B. R. Clayton t 
An asymptotic solution of the momentum equation is given that describes the decay of 
swirling flow passing along the annulus formed between two concentric, straight, circular- 
section pipes having a common starting point. The flow is considered turbulent and 
approximations are made consistent with the notion of fully developed flow conditions. 
Applications of this approach are reviewed and shortcomings highlighted. A series of 
calculations are presented and compared with experimental and theoretical data previously 
obtained by the authors. It is shown that acceptable predictions of the overall flow behavior 
can be obtained over a wide range of initial conditions provided the calculations procedure 
is applied in regions of validity, which has not been the case in some published work. 
Substantial errors are found if, for example, the procedure is allowed to commence at inlet to 
the annulus owing to the inconsistency of the assumptions in the initially developing-flow 
region, which for this work extends at least five outer-pipe diameters downstream from 
inlet. The authors' previous numerical integration scheme may be used to predict flows 
satisfactorily in the developing-flow region and the present asymptotic solution used 
subsequently to reduce computation time and cost. 
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Introduction 

The behavior of turbulent swirling flow along the annulus 
formed between two concentric cylinders we have already 
described 1,2 using experimental data. A numerical analysis 
using various turbulence models has been developed 3 to predict 
the variation of the principal flow parameters from specified or 
measured inlet conditions. The accuracy of the technique was 
discussed along with its validity of application. 

In this paper, we present an asymptotic solution of the 
momentum equation that is mainly concerned with the 
development and subsequent decay of turbulent swirling flow in 
an annulus. We will demonstrate that such a solution can give a 
fast and adequate prediction of the main characteristics of 
turbulent swirling flow although complete generality is not 
possible; indeed, excessive computation would be required to 
achieve this. Approximations are kept to a minimum and are 
fully justified. 

Several studies on swirling flow have been reported 
previously, but these were mainly concerned with the decay of 
swirl in pipes. The early analyses were restricted to laminar flow 
owing to the limited capacity of computers at that time. A 
description of turbulent swirling flow at each point in an 
annulus, including all turbulent components and stresses at 
both walls, requires the solution of five partial differential 
equations, as was shown in a previous numerical analysis. 3 This 
solution is mathematically complex, requiring large CPU times 
and computers. Although some workers have simplified the 
general governing equations to reduce the complexity of 
solutions, doing so can lead to errors in predictions. In the 
following review, we illustrate the deficiencies of previous work 
and thus allow a definition of the terms of reference leading to 
our analysis. 
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Review and appraisal 

Talbot 4 was probably the first to publish an analysis of steady, 
laminar, swirling flow of a constant property fluid in a straight 
pipe of circular cross-section. This work commenced before the 
advance of large-capacity, high-speed computers, so attention 
was focused on small perturbations from Poiseuille flow. Based 
on the coordinate system and component velocities of Figure 1, 
and assuming rotational symmetry, the Navier-Stokes 
equations may be written in the form 

_ ~  _~.]  W2 l~p (2 V) 
V ~ - r + U  ~3x r - p 0r q-v V k ' - ~  (1) 

V~-r+U~f+ r =v  Vzw - (2) 

_ ~U - d t J  1 Op +vV2 0 (3) 
V~-r+U ~x- p c?x 

and the corresponding continuity equation is 

~P P 00 o 
~r  +-7+~-x = (4) 

Equati_on (2) may be simplified by considering the axial 
velocity U to differ from that in Poiseuille flow Up, by a small 
perturbation AU, that is, 

0 = Up+AO (5) 

where 

,6, 

and U represents the maximum velocity on the pipe centerline. 
Assuming all the terms involving AU and the radial velocity ~" 
are neglected on the basis of an order of magnitude argument, 
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Eq. (2) may be linearized to form the swirl equation 

-- ~P? / 2 -  w \  U, ~x =vtV W - ? )  

(~2(V l~ITV ~2W I,i\ 
=v t (~r~+r ?~-f- ~x 2 rT ) (7) 

Equation (7) suggests a solution for f f  can be found by 
separating variables. When this is done, the equation of motion 
can be reduced to a standard form of the confluent 
hypergeometric equation. The solution of this equation 
automatically satisfies the inner boundary condition, namely, 
that W = 0  on the pipe axis. The second condition, W = 0  at the 
pipe walls, is used to determine the eigenvalues as functions of 
Reynolds number. A momentum integral analysis was also used 
by Talbot 4 to estimate the radial velocity and the perturbations 
on the Poiseuille-flow axial velocity, but his results are limited to 
a very large distance from the entry region. 

The analytical approach developed by Wolf et al. 5 was 
initiated by earlier observations of a reversal of the axial velocity 
at the centerline of a pipe containing swirling through-flow. 
However, a strong swirl is needed to develop such a flow 
reversal, so Talbot's analysis was inappropriate. Thus 
consideration was given 5 to flows both along a pipe rotating 
about its axis of symmetry and to swirling flows along stationary 
pipes. The analysis was based on a perturbation about a flow 
undergoing solid-body rotation (forced-vortex) with an axial 
Reynolds number of zero. With a small through-flow (small- 
axial Reynolds number), an analytical solution of the tangential 

+++' 

Figure 1 Coordinate system 

components of the linearized Navier-Stokes and vorticity 
transport equations was obtained by taking as finite the product 
of the Reynolds number and the square of the swirl ratio (the 
ratio of the tangential velocity of the rotating tube to the 
mean axial velocity). The use of Fourier integrals led to a 
transformation of the equations of motion, and the inverse 
Fourier transforms of the solution of the transport equations 
allowed expressions for the vorticity and velocity components to 
be obtained in terms of zero and first-order Bessel functions. A 
numerical technique, based on an iterative scheme using central 
finite differences for all derivatives with respect to radial 
distance, was also developed. The axial distance along the pipes, 
from the junction between the moving pipe and the stationary 
pipe, was transformed by a mapping function to maintain 
numerical accuracy with a fixed number of grid points. The 
kinematic equations were then solved with the required 
boundary conditions, and the variations of pressure 
subsequently deduced by integrating the axial and radial 
components of the Navier-Stokes equations. The results of Wolf 
et al. 5 coincide with those of Talbot 4 at distances well 
downstream from the pipe entrance. 

Kiya et al. 6 examined steady laminar swirling flow in the 
entrance region of a pipe, where the flow development was most 
rapid. The investigation commenced from Eqs. (1 3) and then, 
by assuming a boundary-layer type flow, the equation of motion 
was simplified on the basis of an order of magnitude analysis. 
The energy equation was also included so that the effect of swirl 
on the temperature of the fluid could be found for a constant 
wall temperature. (Throughout this work, we considered air of 
constant Prandtl number 0.72 and only isothermal flows, so no 
further discussion of the energy equation is necessary here.) 
Combining the wall and axis boundary conditions allowed 
integration of both the continuity equation and the 
approximated form of Eq. (1), namely, 
@ l~ 2 

(8) 
~gr - p  r 

Expressions for Op/Or and the radial and tangential velocities 
were then substituted into the approximated form of Eqs. (2) 
and (3). Since the resulting equations were of partial integro- 
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Local velocity in Poiseuille flow 
Fluctuating axial velocity 
Time mean radial velocity 
Fluctuating radial velocity 

V/Uav 
Time mean tangential velocity 
Fluctuating tangential velocity 
Reynolds stresses 
x/ro 
Axial distance from inlet 
Bessel function of first order and second 
kind 
Radius ratio, ri/r o 
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Kinematic viscosity of fluid, #/p 
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differential form, they are unlikely to possess a general 
analytical solution. 

To avoid perturbation techniques or linearization of the 
inertia terms, a finite difference method was developed by Kiya 
et al. 6 so that errors within the entrance region were minimized. 
The subsequent iteration procedure was applied to the axial and 
tangential velocity components and the pressure along the pipe 
axis. Results were obtained for initial swirl distributions of the 
forced-vortex type superimposed on uniform axial flow, and it 
was shown that the presence of swirl substantially increased the 
entrance length and reduced the centerline pressure drop along 
the pipe axis in the fully developed region. The swirl intensity, 
defined as the ratio of angular momentum to axial momentum, 
was found to decay exponentially in the fully developed region 
(where the centerline axial velocity is, say, within 1 ~o of the 
value at infinity), but the decay was considerably more rapid in 
the entrance region. 

Scott 7 simplified Eq. (2) to produce a swirl equation given by 

) (9) 

and applied this to flow along the annulus formed between two 
concentric pipes having a ratio of inner to outer radii of 0.4. 
Equation (9) was considered to describe flow in the region where 
variations of velocity along the annulus were small relative to 
the variations in the radial direction. Furthermore, since the 
tangential velocity ultimately decayed to zero for very large x, 
the average axial velocity Uav was constant. What is not known, 
however, is where these conditions apply in the annulus. Thus 
the differences between Eq. (9) and the equivalent equation used 
by Talbot, 4 our Eq. (7), are (a) on the left-hand side, Uav is 
constant, where 57 is a function of r, and (b) on the right-hand 
side, (32ITV/(3x 2 is omitted from Eq. (9). Scott cast Eq. (9) into a 
dimensionless form and then used the method of separating 
variables for the dimensionless tangential velocity W= W/Uav. 
The general solution of the equation comprised the product of 
an infinite series containing Bessel functions of the first order 
and of the first and second kinds (because the known boundary 
conditions W = 0 apply at both the inner and outer walls) and an 
integral that was evaluated across the annulus. This integral 
contained the product rl~(0,/.), where I~'(0, r) represents the 
swirl velocity at the inlet. A simple solution thus occurred for 
free-vortex flow because the product is then a constant. 

Unfortunately, the previous assumptions regarding orders of 
magnitude are invalid in the entrance region, and so the 
subsequent accuracy of the solution must be open to question. 
The solution should commence at a value of x that corresponds 
to the start of the fully developed region, but this is generally 
unknown; furthermore, free-vortex flow does not then exist. The 
main limitation of Scott's technique lies in the absence of data 
on the location of the starting point for its accurate use. 
Nevertheless, if a numerical technique for the solution of more 
accurate equations of motion were used to ascertain the flow 
behavior in, and the extent of, the developing region, the 
asymptotic solution could be used subsequently with a 
considerable saving in computation effort and time but with no 
loss of accuracy. This is the basis of our investigation, in which a 
constant viscosity model is subsequently adopted. A general 
analysis of turbulent swirling flows lie in the choice of a suitable 
swirling flow in a constant area axisymmetric annulus has 
already been presented, 3 and we will make use of these results 
when comparing accuracies of prediction. We have previously 
pointed out that the principal difficulties associated with the 
analysis of turbulent swirling flows lies in the choice of a suitable 
eddy viscosity model and the increased complexity of the 
equation of motion. Great care is needed if orders of magnitude 
analyses are not to lead to erroneous simplifications, 
inconsistencies, and possible numerical instabilities in the 
solution of the resulting equations. 

Kreith and Sonju a examined turbulent swirling flow in a pipe 
by simplifying the Navier-Stokes equations using an order of 
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magnitude analysis based on experimental evidence. Some of 
the experiments considered were not strongly related to the 
theoretical development but were accepted in the absence of 
more relevant data. In particular, the eddy kinematic viscosity 
was assumed to be spatially independent throughout the flow 
field. Moreover, perturbations on the axial velocity were 
assumed negligible so that U was taken to be a function of r 
only; that is, the fully developed axial velocity profile was used. 
The resulting swirl equation is then given by 

-(31~ /(3214 / l(3W .~-t 
U ~ f x = ( V + e ) t ~ - ~ r  (3r W, / (10) 

We see that since e is constant, the special case of constant 57, 
represented by the average velocity Uav, reduces Eq. (10) to Eq. 
(9), which is the same as that investigated by Scott. 7 In their 
calculations, Kreith and Sonju actually used the expression U = 
~](1-r/ro) 1/7. This approach gave greater accuracy in the 
subsequent solution of Eq. (10) following separation of variables 
and adoption of a method of approximations. 

The theory developed by Kreith and Sonju s was applied to 
swirling flow induced by a helical tape inserted the length of a 
tube; thus the initial swirl distribution and the expression for 
were deduced for that case using related experimental data. The 
correlation equation for ~ was written in the form e=A(Re) ' ,  
where A and n are constants, and Re represents the axial-flow 
Reynolds number. It was recognized that this empirical 
relationship, in which e is taken to be a function only of Re, was 
not really satisfactory, but subsequent correlations show good 
agreement occurred between the average measures of swirl 
decay and theoretical predictions. 

Similarity criteria were used by Rochino and Lavan 9 in the 
derivation of a simplified equation of motion for turbulent 
swirling flow along circular-section pipes. They thus 
automatically restricted their results to fully developed flow, and 
so employed the same U variation as Kreith and Sonju. s The 
similarity criteria adopted were essentially extensions of Von- 
Karman's hypothesis and gave rise to several conditions 
relating the length scale to the mean tangential veloci~ and its 
derivatives. Equation (10) was used 9 to determine W, except 
that an additional term ~2f-V/(3x: was retained in the second set 
of parentheses on the right-hand side of the equation. This 
appears at odds with the assertions concerning orders of 
magnitude, although it seems the term was subsequently 
discarded. Values of the constants, which inevitably arise in 
similarity relationships, were derived from previous work on 
swirling flow in pipes. It was, however, necessary to include a 
discontinuity in the empirical relations describing the eddy 
kinematic viscosity to ensure it vanished at the wall. Despite the 
extensive empiricism and averaging of input data, comparisons 
between the theoretical predictions and measurements 
(obtained by other workers) appear to be good overall at 
distances well downstream from the pipe entry. Even so, it is 
most unlikely that this approach 9 can be generalized or that 
accurate details of the flow near the entry and the walls can be 
obtained. 

From the foregoing, it is evident that attempts to simplify the 
approach to, and subsequent calculations to describe, the 
behavior of swirling flows in pipes and annuli cannot be 
generalized and may lead to significant inaccuracies. An attempt 
to overcome these problems has been described by Morsi and 
Clayton. 3 The purpose of the following treatment is to show a 
simplified analysis can be used accurately only in conjunction 
with complex analysis covering the initial stages of flow 
development of a freely decaying swirl flow downstream 
from the entry to an annulus between two concentric pipes of 
circular cross-section. 

An asymptotic solution 

Although a complete solution of the Navier-Stokes equations 
for turbulent flow is as yet unobtainable, an approximate 
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solution for the decay of swirl in an annulus can be deduced 
from the tangential momentum equation without fully solving 
all the equations. The derivation of the relevant equation is as 
follows, and the method may be considered an algebraic 
solution. 

For incompressible turbulent flow, the Navier-Stokes 
equations can be written in cylindrical coordinates (Figure 1), of 
which the tangential component of rotationally symmetric flow 
with negligible body forces becomes 

- ?~V - aW WV u ~ + v ~  
r 

=v V W -  - ~, (u'w')+~,r(V'w')+2 (11) 

Equation (11) may be referred to as the swirl equation and will 
be simplified and solved after adopting the following 
assumptions: 

1. The flow is fully developed; that is, the decay of the axial 
velocity component is negligible in comparison with the 
decay of the swirl velocity component. 

2. The radial velocity component is very much smaller than 
both the axial and the tangential velocity components. 

3. Since ~2W/ax2 tends to zero asymptotically for large 
Reynolds numbers according to Talbot* and Kreith and 
Sonju, s and owing to the constant momentum distribution 
in the radial direction, one may take (VOW/&+ WV/r)---,O. 

4. The decay of (?(u'w')/Ox is much smaller than that of 
u(aw/&). 

5. Reynolds stress pv'w' can be approximated by 
- #t(O(V/?r- ITV/r). 

6. The eddy kinematic viscosity e=pt/p does not change 
appreciably with r or x and may be considered constant 
throughout the flow. 

7. The basic structure of the pv'w' term does not change from 
one vortex system to another according to Kreith and 
Sonju. 8 

Using the preceding assumptions and inserting the 
approximate value of Reynolds stress in the swirl equation, 
there results 

U ~ = ( v + e ) ~ ? , r ~ + -  r ar r E ) (12) 

It will be convenient to form dimensionless parameters by 
introducing the following ratios: 

U = - -  W = - -  Re =Uav 
Uav Uav v 

~: x X 
e '=  X = - -  L =  (13) 

v ro { R e / ( 1  + e ' ) }  

r r i p =  p _ 
R =  - ~ = - -  1 2 r0 r0 ~P Uav 
where Re represents the Reynolds number of the flow, and c¢ the 
radius ratio. Equation (12) then takes the form 

OW 02W 1 ~W W 
V - - =  + (14) 

? L  ~ R  2 R ~R  R 2 

Equation (14) can be solved by applying the method of 
separation of variables so that we may write 

W = M(R)N(L) (15) 

Thus Eq. (14) reads 

1 dN 1 fdZM 1 dM M }  
N d L - U M { d R S - + R  dR ~T 

(16) 
J 

The left-hand side of Eq. (16) is a function only of L, and the 
right-hand side a function only of R. The equality in this 

equation can be valid only if both sides of the equation are equal 
to the same constant, - 2 2  , for example. Equation (16) then 
becomes 

i dNdL_ 2 .. (d2M I dM M t 
S 2 " = U M ( d R 2 + R  dR R E 

(17) 
) 

42  where - z ,  are the eigenvalues and M(R) the eigenfunctions. 
It is apparent from Eq. (17) that three different possibilities 

arise for the values of -a.,'2 namely, - 2 .  2 > 0, - 2 ,  z = 0, and 
" 2  - ~ .  <0.  However, it was shown by Kreith and Sonju 8 that the 

only valid solution is - 2 2 < 0 ,  and so Eq. (17) reduces to 

dZMdR 2 1 dM / 2 1 ) M  ~ - ~ / ~ + ~ 2 ,  U - ~ /  = 0  (18a) 

and 

dN 
d~-= - N2 2 (18b) 

These two equations can now be solved individually. 
Equation (18b) has a solution of the form 

N = B exp( - 2]L) (19) 

where B is a constant. This shows the swirl velocity component 
decays exponentially along the length of the annulus as deduced 
from the physical behavior of the flow. 2 

Experimental work t'~ 0 has indicated the velocity distribution 
displays an almost uniform pattern except near the walls. Since 
U is a dimensionless quantity, the combination U -  1 can be 
taken as a perturbation factor noting that I U -  11 is unity at the 
concave and convex walls but decreases to zero close to the 
outer edge of the boundary layer on each wall. This permits us to 
introduce a perturbed equation as follows: 

42 42  F(M) + I u -  lla.M + z ,M=O (20) 

compared with an unperturbed equation 

F(m*) + 2"2M * = 0 (21) 

where we have introduced the operator F - dZ /dR 2 + (1/R )(d/dR ) -  
1/R E. The eigenvalues 2., 2* and the eigenfunctions M, M* of 
Eqs. (20) and (21), respectively, may be expanded as follows: 
2 2  - -  . , 2  , - , %  + ( U - 1 ) P , + ( U - I ) Z Q , + ( U - 1 ) 3 R , + . . . +  (22) 

and 

M = M * + ( U - 1 ) p , + ( U - 1 ) 2 q . + ( U - 1 ) 3 r , + . . . +  (23) 

where P., Q,, R, are eigenvalues, and p,, q,, r, are 
eigenfunctions. 

The values of 22 and M for the core region, that is, away from 
the concave and convex walls, have been deduced by MorsP 1 in 
the form 

4 *  2 
2 An 2, = - -  (24) 

U 
and 

M=M* (25) 

However, for the points close to the walls, it has been shown ~ 
42 , 2  /~, = m2. (26) 

and 

M = M* (27) 

where m is the number of terms in the series (Eq. 22). From the 
previous relation, it is apparent that it is sufficient to determine 
the 2* and M* of the unperturbed differential equation (Eq. 21) 
to obtain the 2, and M of the perturbed differential equation 
(Eq. 20). Furthermore, the general solution of the unperturbed 
equation (Eq. 21) is available 12 and takes the form 

M* = a.J1 (,~*R) + b. Y1 (2* R) (28) 

where a. and b. are arbitrary constants, J1 is the first-order 
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Bessel function of the first kind, and Yt is the first-order Bessel 
function of the second kind. 

Solutions for the two variables may now be gathered together 
so that the tangential velocity may be expressed in the form 

W(R,L)=n= ~ ~ exp(-22"L)[ CnJ~(2*R)+ D'Y~(2*R)] (29) 

where C. = Ba. and D. = Bb. are arbitrary constants. 

Finally, the general equation for the dimensionless swirl 
velocity at an arbitrary point, other than on the walls, may be 
obtained by substituting 22 from Eq. (24) and A. from Eq. (37) 
into Eq. (34) to give 

A, exp - 2*~L [ W ( R , L ) = ~  ( U )  Y,(2*a)J,()o.R) 

-J,(2*a)Y,(2*R)] (38) 

B o u n d a r y  c o n d i t i o n s  

At  the in let  

The velocity at the entrance, W(R, 0) may be expressed in the 
form 

W(R, O) =coR- t +c 1 +c2R +c3R2 + . .. +cnRn - 1 (30) 

Equation (30) includes three different and particularly 
important types of flow, namely, free vortex, forced vortex, and 
a linear combination of both, 

A t  the wa l l s  

The swirl velocity at the inner and outer walls must be zero, that 
is, 

W(a, L )=0  (31a) 

and 

w(1, L)=0 (31h) 

since R = ~ at the inner wall and is unity at the outer wall. Using 
these conditions and the value of 2. 2 on the walls from Eq. (26), in 
Eq. (29), we obtain 

W(a,L)= ~ exp(-m2*2L)[C.YaO.*a)+D.Ya(2*a)] (32) 

Since exp(-m2**L) cannot be zero for an arbitrary L, and 
because M* is an orthogonal function 12 it can be shown 

C.Jl(2*a)+ D.Yd2*a)=O 
o r  

C.dl IX*a) 
n .  = (33) 

Yl(2*a) 

Inserting the value of D n into Eq. (29) gives 

W(R, L)= ~ An exp(-22.L)[Y~(2*a)Jl(2*R) 
n = l  

- J ,  (2"~) I71 (2*R)] (34) 

where 

Cn 
A n - ~ - - - -  r,(;o*~) 

From the boundary condition at the inlet, one has 

W(R, 0)= ~ AnM ~ (35) 
n = l  

where 

M1 = Ya (2n a)J 1 (2. R ) -  J 1 (2n a) Y1 (2, R) (36) 

Since M~ is an orthogonal function with respect to the 
weighting function R, the Sturm Liouville theorem ~2 may be 
used to write 

A. = I~ RM, W(R, O)dR 
I~ RM2dR (37) 

Details of the evaluation of the function An have been described 
by Morsi.l 

G e n e r a l  d i s c u s s i o n  o f  c a l c u l a t i o n  p r o c e d u r e s  

In this section, we discuss the computer programs associated 
with the general solution of the swirl equation (Eq. 38) used to 
predict the decay of the tangential velocity components along 
the annulus. We also present some of the results obtained. 

The eigenvalues 2* are determined from the zeros of 

W(1, L)= Yl(z, a)Jl(2 . ) -  Jd2 ,  a)Yl(Z . ) (39) 

NAG routines (available within the UCL computer library) 
were used to evaluate approximations of the Bessel functions of 
the first and second kind, for example, J0(2*), Yo(2*), J1(2"), 
Y1(2"); J0(2*a), Yo(2*a), Jl(2*a), Yl(2*a); and so on. 

A computer program was written to perform the iteration of a 
cycle to satisfy Eq. (39) for different values of 2* and 2*a for 
a =0.51 and 0.61. Table 1 shows the results of these calculations. 
Another computer program was developed to solve Eq. (38) 
analytically for different values of ct, Re, and ~ ,  the swirl blade 
angle.1 (The program can also be modified to provide a solution 
for swirling flow in pipes.) The program starts functioning by 
fitting the inlet tangential velocity profile to a polynomial 
function with the aid of the NAG library routine and then 
computes the radial distribution of the tangential velocity 
profiles along the annulus. The swirl intensity S, defined as the 
ratio of total angular momentum to the total axial momentum 
of the fluid at a given station along the annulus, can be 
calculated from 

s = Ua'r2dr 
~ 02rd r (40) 

The velocity and swirl intensity profiles are then subsequently 
plotted. 

In this analytical solution the eddy kinematic viscosity e is 
assumed to be spatially independent and a function only of 
Reynolds number that takes the form 

/ ;  

- = e' = C(Re)" 
V 

where C and a are constants that depends on the type of flow 
and configurations under consideration. For a pipe flow, Kreith 
and Sonju 8 found the constant C had the value of 4.15 x 10- a, 
whereas the constant a had the value of 0.86 in the Reynolds 
number range 1.8-6.1 x 104. 

T a b l e  I Calculated eigenvalues ~ f o r  di f ferentradiusrat ios 

n 0.30 0.40 0.50 0.51 0.61 

1 4.7052 5.3911 6.3931 6.5184 8.1283 
2 9.1042 10.5577 12.6247 12.8786 16.1470 
3 13.5532 15.7664 18.8889 19.2721 24.1907 
4 18.0199 20.9882 25.1624 25.6740 32.2280 
5 22.4948 26.2155 31.4397 32.0800 40.2280 
6 26.9736 31.4456 37.7189 38.4877 48.2280 
7 - -  - -  - -  44.8961 56.3960 
8 . . . .  51.3055 64.4505 
9 - -  - -  - -  57.7153 72.5040 

10 - -  - -  - -  64.1254 80.5580 
11 - -  - -  - -  70.5358 88.6130 
12 - -  - -  - -  76.9463 96.6667 
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Figure 2 Computed dimensionless tangential velocity profiles in 
annulus commencing from station 1 for ~=0,51 and Re=28700.  
(These values of ~ and Re apply to all subsequent figures unless 
stated otherwise.) 

In this study, a technique similar to that used by Wolf et al. 5 
and Scott 7 has been adopted to deduce e'. The tangential 
velocity profiles at a given station are parameterized with 
respect to the dimensionless variable L, which as shown in Eq. 
(13), contains x, Re, and e', and so one can deduce the best fit for 
e' from comparing the analytical and experimental profiles. By 
carrying out this procedure for two different Reynolds numbers, 
namely, 28 700 and 22400, the following relation for e' was 
found to hold good: 

e' = 0.404(Re) °'3°~ (41) 

It is interesting to note that in the analysis of an actuator disc 
model of an axial compressor, Hawthorne and his 
coworkers ~3'14 developed an equation similar to Eq. (38) to 
describe the exponential decay of radial velocity of an inviscid 
fluid passing through an annulus. The presence of a radial 
velocity results from a radial shift of streamlines, but 
circumferential (swirl) velocities were regarded as negligible in 
the linear theory. Applying appropriate boundary conditions 
leads to an equation identical to Eq. (39) for the determination 
of the eigenvalues. It is pointed out that an approximate 
solution for the zeros of Eq. (39) is given by 

n g  ).* ~ . . . .  ( 4 2 )  

in our notation, where n is a positive integer. Table 1 shows this 
approximate solution improves for all c~ as n becomes large but 
still represents good accuracy for the first term corresponding to 
n = 1. This point was not apparently appreciated by Scott, 7 who 
stated that for n large, the difference in successive eigenvalues 
exhibited by his numerical analysis of the case ~=0.4 
approximated 5.236, which is, of course, identical to n/0.6. 

Equations (38) and (41) then show, with the approximation 
(Eq. 42), the first term in the series for W(R, L) decays as 

e x p -  1 - ~  Re =exp l  ~ ; (43) 

Since the asymptotic theory does not apply accurately until the 
flow is fully developed, that is, until U is a function only of R, Eq. 
(43) should strictly be used to ascertain the exponential decay of 
swirl beyond the value of X corresponding to fully developed 
flow. The exponential decay function would then read 

e x p t -  0.01468(X- 9.9)} 

since X = 9.9 for fully developed flow as stated later. Detailed 
confirmation of this type of decay with the first-term dominant 
requires substantial analysis and has not yet been checked 
rigorously, but further examination of the data described in the 
next section certainly lends support to this contention. 
Nevertheless, it would be quite misleading to overemphasize the 
analogy between the actuator disc problem and the present 
problem, since the first is concerned with inviscid flow and radial 
velocities, and the latter is clearly not. 

R e s u l t s  

Figures 2 and 3 show the computed tangential velocity profiles 
in dimensionless form for different Re, ~ ,  and ~. Station 1 
corresponds to X = 0 ,  and the remaining stations are at 
consecutive intervals of 1.65. Two initial conditions were 
examined to estimate the effect of initial conditions on the radial 
distributions of tangential velocity and the subsequent decay of 
swirl along the annulus. For the first condition, the 
experimental, nearly free-vortex initial swirl distribution at 
station 1 was used, and the results in Figure 2 show the initial 
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Figure 3 Computed dimensionless tangential velocity profiles in 
annulus commencing from station 7 
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predicted tangential velocity profiles at station 9 and 
corresponding measured data. t The predicted profile starting 
from initial conditions at station 7 is evidently in closer 
agreement with experimental data than that predicted from the 
profile at station 1. The profile from the latter prediction is more 
peaky, and there are significant differences between the 
measured and predicted values particularly near the outer wall. 
This behavior may be attributed to the stronger influence of 
the shear and normal stresses on the development of the flow in 
the inlet and rapidly decaying regions than that in the fully 
developed region where the flow starts to decay exponentially. 

The capability of the algebraic solution to predict the physical 
behavior of turbulent swirling flow in an annulus may be 
examined by using the dimensionless parameter A4= WR, 
representing angular momentum, and the dimensionless radial 
pressure gradient OP/~R. These parameters are plotted for 
different qJ and the two initial conditions in Figures 5-8. It may 
be seen in Figures 5(a) and 5(b) that, in the core region, the 
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Figure 5 Computed distr ibution of dimensionless angular 
momentum in annulus commencing from station 1 

free-vortex character is rapidly lost. The location of maximum 
swirl velocity moves radially toward the concave wall and is, for 
example, located at a value of/]  = 0.71 at station 19 (X = 29.70) 
for ~ = 1 5  ° and Re=28700. Unless stated otherwise, all the 
results shown in the following figures refer to ~=0.51 and 
Re = 28 700. 

For the second initial condition, the experimental tangential 
velocity profile at station 7 was used corresponding to the fully 
developed region. The results shown in Figure 3 illustrate a 
behavior similar to that of the first case. However, compared 
with the first case, the location of/~ is slightly closer to the 
concave wall and has a value of 0.715 for ~F = 15 °. The effects of 
changes in Re and q~ are also shown in Figure 3. It can be seen 
that R increases, that is, moves toward the outer concave 
wall, as Re decreases and 'F increases. 

An investigation was carried out to examine the influence of 
the two initial conditions on the tangential velocity distribution 
further downstream in the fully developed flow region of the 
annulus. It can be seen from the results of Figure 4, which 
represent a typical swirl angle of 30 °, that the discrepancies 
between the two predicted profiles are significant, particularly at 
the beginning of the fully developed region of the flow at station 
7. The effect of the initial conditions on the pattern of the profiles 
downstream diminishes as the swirl progressively decays. 
However, even at station 21, there is evidently still a significant 
difference between the two profiles in both shape and 
magnitude. Figure 4 also shows a comparison between the two 
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Figure 6 Computed distribution of dimensionless 
momentum in annulus commencing from station 7 
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guide vane angles investigated within the first few stations of 
commencement of the prediction. Thereafter, the decay is 
virtually linear with slope independent of guide vane angle qJ, 
but values of S/$7 decrease as qJ increases. 

A comparison between the measured1 tangential profiles and 
those predicted by this asymptotic theory is shown in Figure I 1 
for the case qJ = 45 ~'. The theoretical profiles are predicted from 
the inlet profile of station 1 (at x - 0 ) ,  and it can be seen that 
significant divergence of results occurs at station 6. Similar 
behavior was observed for other values of q', ct, and Re. This 
deterioration in the agreement between corresponding profiles 
continues with distance downstream because boundary-layer 
growth increases, especially near the outer (concave) wall, and 
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pressure gradient in annulus 

variation of ~t follows that at the entry station 1; indeed, for 
qJ = 15 °, the constancy o f / ~  implies free-vortex flow. In each 
case, the core behavior is maintained approximately to station 8 
corresponding to X = 11.55; thereafter, the annular variation of 
~t appears approximately parabolic. Near the inner wall 
/Q" oC R 2, corresponding to forced-vortex flow with the constant 
of proportionality being a function of the axial position X. 
However, near the outer wall, h4 decreases rapidly, implying the 
possibility of flow instability adjacent to the concave surface. In 
Figures 6(a) and 6(b), the experimental distributions at station 7 
have been used as the starting point for subsequent calculations. 
We now see the core behavior similar to that at station 7 being 
extended to station 11 for both values of W, as found from 
measurements. 

The pressure gradient ?~P/OR was deduced from Eq. (8). As 
would be expected, the graphs of Figures 7 and 8 indicate dP/~R 
increases as the swirl angle increases. With increasing axial 
distance downstream, ~P/OR decreases as does ~W/~R. In the 
core region, there is evidently a decrease in OP/OR, with R 
implying a free-vortex variation of the tangential velocity as 
discussed earlier. Furthermore, near the outer wall, the pressure 
gradient is small and, contrary to experimental findings, there is 
a very small decrease of ~P/~R with R. This anomaly arises from 
the influence of normal and shear stresses that were neglected in 
the derivation of the asymptotic solution. One would expect, 
and indeed we find, a better agreement from the algebraic 
solution near the inner wall than near the outer wall, as Figure 4 
shows. 

Figures 9(a)-9(c) show the decay of the local swirl intensity as 
a proportion of the inlet (maximum) value for different guide 
vane angles W, radius ratios e and Re. The main characteristics 
of the flow may be observed; that is, the swirl ratio decreases 
with X, and for a given X, the ratio decreases slightly as 
increases but more significantly as ct increases and Re decreases. 
The data in Figure 9(c) show the swirl decay along the annulus 
for two values of c< and for the free-vortex initial swirl 
distribution W =  R-1 used by Scott. 7 Figure 10 plots the swirl 
decay for the second initial condition, where the initial profile 
starts at a fully developed station. It can be seen that the swirl 
decays exponentially with distance downstream and for all the 
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Figure 11 Comparison of computed and experimental dimension- 
less tangential velocity profiles in annulus commencing from 
station 1 
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Figure 12 Comparison of computed and experimentally deter- 
mined swirl intensities in annulus commencing from station 1 

applying this technique before the flow is fully developed 
underpredicts shear stresses in the flow near the outer wall. 

Values of the local swirl intensity S, as a proportion of the 
inlet value S 1 at station 1, have also been calculated from the 
algebraic solution, again starting at X = 0. Figures 12(a)-12(c) 
show data for three values of W, and corresponding 
experimentally determined variations, within the rig test 
section, are shown for comparison. With the assumptions used 
for the algebraic solution it is not, perhaps, surprising that the 
theoretical curves show little variation with qL More important, 
there is a large divergence between predicted and measured 
data, although this difference reduces as qJ increases from 15 ° to 
45 ° . Thus although some workers have tried to predict the 
behavior of swirling flows in an annulus using asymptotic 
solutions applied from inlet, it can be seen that such an 
approach is not really satisfactory. The errors involved in 
applying asymptotic conditions in regions where these do not 
hold clearly lead to increasing disparity between predicted and 
measured velocity and swirl distributions with increasing 
distance along the test section. 

Some of our previous work 1 has shown by the time station 7 
has been reached, corresponding to X = 9.9, the flow may be 
considered fully developed, that is, the U profile has a constant 
shape. It is, therefore, only for stations beyond this that the 
asymptotic solution should be used. A comparison between 
actual and predicted tangential velocity profiles for station 7 and 
beyond is shown in Figure 13 for q~=45 °, a value that may be 
considered typical of others. Although the central, virtually 
linear, part of the curve still defies accurate prediction, there is, 
nevertheless, sufficiently encouraging agreement between 
experiment and theory to support the view that a full numerical 
integration of the equations of motion is needed up to the fully 
developed flow region, and thereafter, the simpler, asymptotic 
solution is sufficient. Despite the differences in the actual 
velocity profiles, integrating these to provide estimates of the 
swirl intensity shows excellent agreement with similar 
assessments based on the measured components of flow velocity 
as shown in Figure 14. Clearly, the discrepancy between the 
velocity profiles of Figure 13 near the inner and outer walls of 
the annulus, which arises from the neglect of normal stresses in 
the asymptotic solution, contributes little to the calculation of 
swirl intensity. 

C o n c l u s i o n s  

We have discussed the algebraic, or asymptotic, solution of the 
equations describing the behavior of swirling turbulent flow 
passing through an annulus formed between two concentric 
cylinders of circular cross-section. The theory predicts an 
exponential decay of swirl along the annulus, which can be 
represented by S/$7 = exp{-  b ( X -  9-9)}, where the local swirl 
parameter S is expressed as a fraction of the value at the start of 
the fully developed region represented by station 7, where 
X =9.9. The rate of decay of swirl increases with decreasing 
Reynolds number and with increasing radius ratio ~ but shows 
only a slight dependence on the initial swirl angle represented by 
~ .  These findings match those reported for the decay of 
turbulent swirling flow in a circular section pipe. 

The profiles of tangential velocity as functions of local radius 
show that the point at which W is a maximum moves out 
radially toward the concave wall as development takes place 
from the inlet profile that has a near free-vortex nature. 
Nevertheless, even at the last station in the test section, the 
maximum W point is still nearer to the convex wall than the 
concave wall, which supports the results of other workers 
dealing with less rigorous theories and experimental procedures. 

An examination of theoretical and experimental data has 
shown that, at least for our investigations, the eddy kinematic 
viscosity can be expressed as a function of only Re and has the 
form 

= 0.404v(Re)O.305 

We have shown that the algebraic (asymptotic) solution to the 
equations of motion can produce acceptable results if applied 
correctly. That is, the calculations should commence at a 
location in the annulus where fully developed flow exists. If, as 
some workers have done, the method of solution is allowed to 
commence at the annulus inlet, substantial errors are incurred. 

In a series of papers, we have presented and analyzed 
experimental results from annulus flows and developed several 
theoretical approaches. The numerical integration of equations 
developed from the Navier-Stokes equations has been shown to 
give good predictions but at the expense of large computing 
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Figure 13 Comparison of computed and experimental dimension- 
less tangential velocity profiles in annulus commencing from 
station 7 
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times and storage. However, the use of the techniques discussed 
in this paper results in the restriction of the numerical technique 
to the point at which the flow is considered fully developed; 
thereafter, a simpler analysis can be used with good accuracy. 
Finally, it may be concluded that all theoretical approaches 
require adopting some kind of turbulence model, and as yet, no 
sufficiently accurate general form is available. More work is 
evidently required on that particular topic before an entirely 
theoretical prediction can be developed and used for a broad 
class of swirling flows. 
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